
A b s t r a c t. The potential use of optimized support vector

machines with simulated annealing algorithm in developing pre-

diction functions for estimating soil aggregate stability and soil

shear strength was evaluated. The predictive capabilities of support

vector machines in comparison with traditional regression pre-

diction functions were also studied. In results, the support vector

machines achieved greater accuracy in predicting both soil shear

strength and soil aggregate stability properties comparing to tradi-

tional multiple-linear regression. The coefficient of correlation (R)

between the measured and predicted soil shear strength values

using the support vector machine model was 0.98 while it was 0.52

using the multiple-linear regression model. Furthermore, a lower

mean square error value of 0.06 obtained using the support vector

machine model in prediction of soil shear strength as compared to

the multiple-linear regression model. The ERROR% value for soil

aggregate stability prediction using the multiple-linear regression

model was 14.59% while a lower ERROR% value of 4.29% was

observed for the support vector machine model. The mean square

error values for soil aggregate stability prediction using the multiple-

linear regression and support vector machine models were 0.001

and 0.012, respectively. It appears that utilization of optimized

support vector machine approach with simulated annealing

algorithm in developing soil property prediction functions could be

a suitable alternative to commonly used regression methods.

K e y w o r d s: soft computing, support vector machines, simu-

lated annealing algorithm, soil shear strength, aggregate stability

INTRODUCTION

New soft computing techniques may be used in achie-

ving tractability, robustness, and to provide a low cost solu-

tion with a tolerance of imprecision, uncertainty, partial

truth, and approximation (Huang et al., 2010). Among soft

computing techniques, support vector machines (SVMs)

have attracted greater interest recently in agricultural and

biological engineering. SVMs are a promising machine learn-

ing method originally developed for pattern recognition

problem based on structural risk minimization (Li et al.,

2009). Basically, SVMs are closely related to artificial

neural networks (ANNs). In fact, SVM model using sig-

moid kernel function is equivalent to a two-layer perceptron

neural network. Using a kernel function, SVMs are alter-

native training methods for polynomial, radial basis fun-

ction, and multilayer perceptron classifiers in which the

weights of the network are found by solving a quadratic

programming problem with linear constraints, rather than by

solving a non-convex, unconstrained minimization problem

as in standard ANN training (Huang et al., 2010).

Choosing appropriate values for parameters of SVM is

an important step in SVM analysis which has a great in-

fluence on its performance and thus on its prediction accu-

racy. In this sense, utilization of metaheuristics may to be

useful in discovering the optimal value of SVM parameters

for the best forecast and estimation performance (Mo et al.,

2010; Zhang and Guo, 2009). Simulated annealing (SA)

algorithm is one of the well-known metaheuristics that can

discover a good quality solution to an optimization problem

by trying random differences of the current solution

(Kirkpatrick et al., 1983). The original intension of SA is re-

semblance between annealing procedures of solid material

in physics and general combination optimization problem

and its application field is extended from the original combi-

nation optimizing problem to continuous space optimizing

problem (Geng et al., 2007; Kirkpatrick et al., 1983).

Various laboratory-based techniques and indices have

been proposed for measuring and evaluating the surface soil

shear strength and soil aggregate stability. Nevertheless,

most of these techniques are generally time consuming and

rather complicated, particularly, when large amount of samples

are required to be characterized for application on a large
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scale. Alternatively, these soil properties may be estimated

using easily-available data by the use of soft computing

techniques. Most commonly easily-available soil properties

affecting soil shear strength and aggregate stability are soil

particles, calcium carbonate, organic matter contents, and

topographic attributes (Canasveras et al., 2010; Canton et al.,

2009; Kêsik et al., 2010; Ohu et al., 2009).

The main objective of this study was to investigate the

potential use of an optimized SVM with SA algorithm in

developing prediction functions for estimating soil aggregate

stability and soil shear strength using easily-available soil

properties.

Comparative evaluation of the predictive capabilities of

SVMs and traditional regression prediction functions was

also part of the goal.

MATERIALS AND METHODS

The study area was a part of Bazoft watershed (31° 37' to

32° 39' N and 49° 34' to 50° 32' E) located in northern part of

Karun river basin in central Iran. A supervised random

sampling was designed in different land unit tracts defined

using geology, topography, and land use maps in the

environment of ILWIS 3.4 software (ITC, University of

Twente, Netherlands) to collect soil samples. A total of 160

soil samples were collected from the top 5 cm of soil surface

to produce a measurement of diversity of soil properties

within each land unit tracts. Soil organic matter (SOM) was

determined by the Walkley-Black method (Nelson and

Sommers, 1986). The analysis of soil particle size distribu-

tion ie very fine sand, fine sand, sand, clay, silt was perfor-

med using the procedure described by Gee and Bauder

(1986). Calcium carbonate equivalent (CCE) was determi-

ned by the back-titration method (Nelson, 1982).

The soil samples for aggregate stability assessment

were taken in such a way that minimum structural deforma-

tion and/or destruction happened to the soil aggregates. The

method of van Bavel (1950) modified by Kemper and

Rosenau (1986) was used to determine the wet-aggregate

stability. Mean weight diameter (MWD) and geometric

mean diameter (GMD) of the aggregates were used as in-

dicators of soil aggregate stability. A shear vane (model:

BS1377-9) was also used to measure the in situ surface soil

shear strength (SSSS) in the saturation condition. The topo-

graphic attributes of the representative points including

elevation, slope, and aspect were also characterized using a 20

by 20-m digital elevation model (DEM). For quantifying the

vegetation in each representative point, the normalized diffe-

rence vegetation index (NDVI) was derived using IRS-1D

April 2008 satellite image at a spatial resolution of 24 by

24-m (Indian Space Applications Centre, Ahmedabad, India).

All the data were then tested for their normality using

Kolmogorov-Smirnov method using SAS statistical soft-

ware (Cary, NC., USA). Two different groups of easily-

available inputs were selected for predicting soil aggregate

stability and soil shear strength (Table 1). Training set of 113

samples was obtained from total of 160 by random and the

other 47 soil samples were used as the testing set.

Multiple-linear regression (MLR) was used for the re-

gression analysis. The global regression model used in the

data set was:

Y = â0 + â1X1 + â2X2 + â3X3 +…+ ânXn , (1)

where: Y is dependent variable, â0 is a constant representing

the Y value when all the independent variables are 0, X is

independent variable, and â1, â2, â3, … , ân are regression

coefficients. The SAS statistical software was used to derive

the multiple-linear regression models.

Support vector machines (SVMs) are the state-of-the-

art neural network technology based on statistical learning

(Vapnik, 1995). The basic idea of SVM is to use a linear

model to implement non-linear class boundaries through non-

linear mapping of the input vector into a high-dimensional

feature space. The linear model constructed in the new space

can represent a non-linear decision boundary in the original

space.

Given a set of training data { }D x yi i i

n
=

=
( , )

1
(where xi

is the input vector, x X yi iÎ , is the desired value and

y Ri Î , and n is the total number of data patterns), the

regression function of SVM is formulated as follows:

y f x w x bi i= = +( ) ( )f , (2)

where: f i is the feature of inputs, and wi and b are

coefficients. The coefficients (wi and b) are estimated by

minimizing the following regularized risk function (Vapnik,

1995):
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In Eq. (3), the first term is the empirical error (risk) and

is measured by Eq. (4). The L d ye ( , ) is called e-insensitive

loss function, the loss equals zero if the forecast value is

within the e-tube. The second term is used as a measure of
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Output Inputs

SSSS
clay, silt, VFS, FS, sand, SOM, CCE, MWD, slop,

aspect, NDVI, elevation

GMD
clay, silt, sand, SOM, CCE, slop, aspect, NDVI,

elevation

VFS – very fine sand, FS – fine sand.

T a b l e 1. Different inputs used for developing the SSSS and

GMD prediction functions



the flatness of the function. Thus, C is referred to the regula-

rized constant and determines the trade-off between the em-

pirical risk and the regularization term. The term e is also the

tube size and equivalent to the approximation accuracy pla-

ced on the training data points. Both C and e are user-

prescribed parameters, two positive slack variables x i and x i *

which represent the distance from actual values to the cor-

responding boundary values of e-tube, are introduced. Then,

Eq. (3) is transformed into the following constrained form:

minimize:
1

2

2

1

w x x+ +å
=

C i i
i

N

( *), (5)

subject to: w f e xi i i i ix b d( ) *+ - £ + ,

d i - w f e xi i i ix b( ) ,- £ +

x xi i, * i=1, 2, ..., N.

This constrained optimization problem is solved using

the following primal Lagrangian form:
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Eq. (6) is minimized with respect to primal variables wi , b,

x i and x i
* , and maximized with respect to the non-negative

Lagrangian multipliers a i
* and b i

* . Finally, the Karush-Kuhn-

Tucker conditions are applied to the regression, and Eq. (6)

has a dual Lagrangian form:
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with the constraints of:
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i
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In Eq. (7), the Lagrange multipliers satisfy the equality a i ,

a i
* = 0 . The a i and a i

* are calculated, and the optimal

desired weight vector of the regression hyper-plane is:
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Therefore, the regression function can be given as:
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Here, the K(xi, x) is named the kernel function. In this

study, the radial basis function (RBF) was used as the kernel

function:
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where s is kernel parameter (Burges, 1998; Cristianini and

Taylor, 2000; Li et al., 2009).

Discovering the optimal values of SVM parameters is

important to achieve a good forecast and estimation

performance (Mo et al., 2010; Zhang and Guo, 2009). The

simulated annealing (SA) algorithm was used for optimizing

the parameters of SVM. More specifically, the SA executes

the following steps (Geng et al., 2007):

– choosing an initial solution and compute the value of the

objective function of F x( )( )0 ;

– initializing the incumbent solution ie the best available

solution, denoted by:

( *, *),x F as: ( *, *) ( , ( ))( ) ( )x F x F x¬ 0 0 . (12)

– until a stopping criterion is fulfilled and for n starting

from 0, do: draw a solution x at random in the neigh-

borhood V x n( )( ) of x n( ) .

If F x F x n( ) ( )( )£ then x xn( )+ ¬1 and if F x F( ) *£ then

( , ( ))x F x .

If F x F x n( ) ( )( )> then draw a number p at random in [0,1]

and if p p n x x n£ ( , , )( ) then x xn( )+ ¬1 , else x xn n( ) ( )+ ¬1 .

The function p n x x n( , , )( ) is often taken to be a Boltz-

mann function inspired from thermodynamics models:
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where: DF F x F x n= -( ) ( )( ) and Tn is the temperature at

step n, that is a non-increasing function of the iteration

counter n. In so-called geometric cooling schedules, the

temperature is kept unchanged during each successive stage,

where a stage consists of a constant number L of consecutive

iterations. After each stage, the temperature is multiplied by

a constant factor of a Î ( )0,1 .

In SA algorithm, if the candidate does not improve the

current solution, there is still a possibility of transition

according to the next probability function (Azizi and

Zolfaghari, 2004):
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In each iteration, the above transition probability is

compared with a uniform random number. If the probability

value is greater than or equal to the random number, then the

transition to the worse solution is accepted. If the transition

from the current solution to the candidate solution is re-

jected, another solution in the neighborhood will be gene-

rated and evaluated. Due to the generalization of the con-

cepts that it involves, the SA algorithm can be implemented

to a wide range of optimization problems. In particular, no

specific requirements are needed to be imposed neither on

the objective function (derivability, convexity, etc.) nor on

the solution space. Moreover, it can be shown that the meta-

heuristic converges asymptotically to a global minimum

(van Laarhoven and Aarts, 1988). Table 2 shows the optimal

values of the SVM parameters resulting from SA analysis

for the prediction of SSSS and GMD properties.

The mean square error (MSE), mean absolute error

(MAE), correlation coefficient (R), and error percentage

(ERROR%) between the measured and the predicted SSSS

and GMD values were used to evaluate the performance of

the proposed models. The MSE, MAE, and ERROR% sta-

tistics are defined as below:
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where: $yk denotes the predicted value yk , is the measured

value, and n is the total number of observations.

RESULTS AND DISCUSSION

The results on prediction of SSSS using MLR and SVM

techniques are presented in Table 3. The MAE and MSE

values for the MLR model were 0.81 and 0.99, respectively,

and an ERROR% value of 12.72% found for this technique.

A lower ERROR% value of 2.64% in prediction of SSSS

using the SVM model obtained in comparison with the MLR

model. The MAE and MSE values for the SVM model were

also 0.17 and 0.06, respectively. The coefficient of correla-

tion (R) between the measured and predicted SSSS values

for the SVM model was 0.98 while it was 0.52 for the MLR

model. Therefore, according to the evaluation indices, it

appears that there is a more suitability of developing soil

shear strength prediction models using SVM approach than

traditional regression models. The worse performance of the

MLR model in predicting the measured SSSS values can be

also seen in Fig. 1, where the error performance values for

the MLR model are more scattered than those for the SVM

model. On the other hand, our findings also revealed the

significance of combining soil properties with topographic

and vegetation attributes together for the estimation of SSSS

using the optimized SVM model with SA algorithm.

Table 4 shows the evaluation criterion results for the

constructed MLR and SVM models for GMD prediction.

The MAE, MSE, R, and ERROR% values for the GMD

prediction using the MLR model were 0.08, 0.012, 0.42, and

14.59%, respectively. The SVM model could predict the

GMD with more satisfactory performance than the MLR

model and a higher correlation coefficient value of 0.97 was

obtained for this technique as compared to that obtained by

the MLR model. The MAE, MSE, and ERROR% values for

GMD prediction using the SVM model were also 0.02,

0.001, and 4.29%, respectively. Higher error values in GMD

prediction using the MLR method were also found in

comparison with SVM method (Fig. 2). However, a similar

trend of error performance values for GMD prediction using

both techniques was observed for most of the samples.

These results suggest a better performance of SVM techni-

que in prediction of the GMD than MLR technique and thus
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Soil

property

SVM parameter

Kernel

(s)

Intensive

(e)

Punishment

coefficient (C)

SSSS 0.1 0.09 18

GMD 0.5 0.06 24

T a b l e 2. Optimal values of the SVM parameters resulting from

the simulated annealing algorithm analysis for the prediction of the

SSSS and GMD properties

Model

type

Evaluation criterion

MAE MSE R ERROR %

MLR 0.81 0.99 0.52 12.72

SVM 0.17 0.06 0.98 2.64

T a b l e 3. Goodness-of-fit of proposed MLR and SVM models for

the prediction of soil shear strength

Model

type

Evaluation criterion

MAE MSE R ERROR %

MLR 0.08 0.012 0.42 14.59

SVM 0.02 0.001 0.97 4.29

T a b l e 4. Goodness-of-fit of proposed MLR and SVM models for

the GMD prediction



the optimized SVM with SA algorithm technique seems to

be more reliable in predicting the soil aggregate stability

than MLR technique in the site studied.

Comparing the obtained results from the proposed MLR

and SVM models indicated that the optimized SVM model

with SA algorithm was better in predicting the investigated

soil properties than the MLR model (Tables 3 and 4). The

obtained coefficient of determination (R
2
) values between

the measured and the predicted SSSS and GMD values using

both models also confirm this finding (Figs 3 and 4). The R
2

value between the measured and the predicted SSSS values

using the MLR model was 0.27 while it was 0.95 using the

SVM model (Fig. 3). Furthermore, the coefficient of deter-

mination values for the GMD prediction using the MLR and

SVM models were 0.18 and 0.95, respectively (Fig. 4).

A reason for this finding (better performance of SVM

approach in predicting the investigated soil properties) may

be attributed to the less data available for developing

reasonable MLR models. In contrast, the SVM models could

recognize the relationships with relatively less data because

of their distributed and parallel computing nature. A second

reason why the linear model ie multiple regression might be

unreliable to predict the SSSS and GMD in the study area is

that the effect of the predictors on the dependent variable

may not be linear in the nature. In other word, the SVM

models could probably predict the SSSS and GMD with

more satisfactory performance owing to their more flexi-

bility and capability to model non-linear relationships. In

fact by using the kernel function in constructing of SVM

model, the original inputs are first non-linearly mapped into

the feature space, and the resulted å-SVM becomes so fle-

xible that it can be used to deal with the complicated non-

linear regression problem (Li et al., 2009). Furthermore, the

low accuracy of the MLR approach in estimating the mea-

sured SSSS and GMD values might be associated with the

sample distribution, spatial variation, and the study area

scale effects. The major conceptual limitation of all regression

techniques that is, one can only ascertain relationships but

never be sure about underlying causal mechanism, should be

also considered (Yilmaz and Yuksek, 2009).
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Fig. 1. Comparison of observed error values in SSSS prediction using SVM and MLR models.

Fig. 2. Comparison of observed error values in GMD prediction using SVM and MLR models.
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There are limited published studies dealing with the use

of SVMs in soil sciences: Lamorski et al. (2008), for in-

stance, estimated soil hydraulic parameters from measured

soil properties using SVMs. They reported that 3-parameter

SVMs performed generally better than or with the same accu-

racy as eleven parameter ANNs. Twarakavi et al. (2009) de-

veloped SVM models for estimating the hydraulic para-

meters describing the soil water retention and hydraulic con-

ductivity. They stated that the SVM-based method predic-

ted the hydraulic parameters better than the ANN-based me-

thod. Wang et al. (2009) compared different artificial intel-

ligence methods for forecasting monthly discharge time se-

ries. They concluded that SVM model was able to obtain bet-

ter forecasting accuracy in terms of the various evaluation

measures during the both training and validation phases.

CONCLUSIONS

1. An optimized support vector machines with the si-

mulated annealing algorithm was evaluated for predicting

some soil properties ie soil shear strength and soil aggre-

gate stability and achieved greater estimation accuracy

comparable to that of traditional multiple-linear regression.

2. The effects of soil properties, topographic and vege-

tation attributes on soil shear strength and soil aggregate sta-

bility demonstrated the suitability of developing prediction

functions using SVMs.

3. According to the advantages associated with the use

of the SVM over traditional linear regressions, studies on this

approach should continue in an effort to relate soil properties

to the basic soil characteristics and its advantages should

motivate soil scientists to work further on it in the future.
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